L-type Calcium Channel Cav1.2 Is Required for Maintenance of Auditory Brainstem Nuclei.

نویسندگان

  • Lena Ebbers
  • Somisetty V Satheesh
  • Katrin Janz
  • Lukas Rüttiger
  • Maren Blosa
  • Franz Hofmann
  • Markus Morawski
  • Désirée Griesemer
  • Marlies Knipper
  • Eckhard Friauf
  • Hans Gerd Nothwang
چکیده

Cav1.2 and Cav1.3 are the major L-type voltage-gated Ca(2+) channels in the CNS. Yet, their individual in vivo functions are largely unknown. Both channel subunits are expressed in the auditory brainstem, where Cav1.3 is essential for proper maturation. Here, we investigated the role of Cav1.2 by targeted deletion in the mouse embryonic auditory brainstem. Similar to Cav1.3, loss of Cav1.2 resulted in a significant decrease in the volume and cell number of auditory nuclei. Contrary to the deletion of Cav1.3, the action potentials of lateral superior olive (LSO) neurons were narrower compared with controls, whereas the firing behavior and neurotransmission appeared unchanged. Furthermore, auditory brainstem responses were nearly normal in mice lacking Cav1.2. Perineuronal nets were also unaffected. The medial nucleus of the trapezoid body underwent a rapid cell loss between postnatal days P0 and P4, shortly after circuit formation. Phosphorylated cAMP response element-binding protein (CREB), nuclear NFATc4, and the expression levels of p75NTR, Fas, and FasL did not correlate with cell death. These data demonstrate for the first time that both Cav1.2 and Cav1.3 are necessary for neuronal survival but are differentially required for the biophysical properties of neurons. Thus, they perform common as well as distinct functions in the same tissue.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

L-type CaV1.2 deletion in the cochlea but not in the brainstem reduces noise vulnerability: implication for CaV1.2-mediated control of cochlear BDNF expression

Voltage-gated L-type Ca(2+) channels (L-VGCCs) like CaV1.2 are assumed to play a crucial role for controlling release of trophic peptides including brain-derived neurotrophic factor (BDNF). In the inner ear of the adult mouse, besides the well-described L-VGCC CaV1.3, CaV1.2 is also expressed. Due to lethality of constitutive CaV1.2 knock-out mice, the function of this ion channel as well as it...

متن کامل

Maturation of Calcium-Dependent GABA, Glycine, and Glutamate Release in the Glycinergic MNTB-LSO Pathway

The medial nucleus of the trapezoid body (MNTB) is a key nucleus in high-fidelity temporal processing that underlies sound localization in the auditory brainstem. While the glycinergic principal cells of the MNTB project to all primary nuclei of the superior olive, during development the projection from MNTB to the lateral superior olive (LSO) is of interest because this immature inhibitory pro...

متن کامل

L-type CaV1.2 calcium channels: from in vitro findings to in vivo function.

The L-type Cav1.2 calcium channel is present throughout the animal kingdom and is essential for some aspects of CNS function, cardiac and smooth muscle contractility, neuroendocrine regulation, and multiple other processes. The L-type CaV1.2 channel is built by up to four subunits; all subunits exist in various splice variants that potentially affect the biophysical and biological functions of ...

متن کامل

L-type voltage-gated calcium channel is involved in the pathogenesis of acoustic injury in the cochlea.

Excessive calcium entry into cells leads to cell death, and voltage-gated calcium channels (VGCCs) are responsible for the calcium entry in the central nervous system. VGCC blockers inhibit excessive calcium entry and protect the central nervous system against various types of injury. The purpose of the present study was to identify the type of calcium channels that is responsible for acoustic ...

متن کامل

Enhanced expression of L-type Cav1.3 calcium channels in murine embryonic hearts from Cav1.2-deficient mice.

Voltage-gated calcium (Ca2+) channels play a key role in the control of heart contraction and are essential for normal heart development. The Cav1.2 L-type calcium channel is the predominant isoform in cardiomyocytes and is essential for excitation-contraction coupling. Although the inactivation of the Cav1.2 gene caused embryonic lethality before embryonic day E14.5, hearts were contracting be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 290 39  شماره 

صفحات  -

تاریخ انتشار 2015